SERVIÇO PÚBLICO FEDERAL MEC / SETEC

CIDADE DE PELOTAS INSTRUÇÕES GERAIS

- 1 Este caderno de prova é constituído por 40 (quarenta) questões objetivas.
- 2 A prova terá duração máxima de 04 (quatro) horas.
- 3 Para cada questão, são apresentadas 04 (quatro) alternativas (a b c d).
 APENAS UMA delas responde de maneira correta ao enunciado.
- 4 Após conferir os dados, contidos no campo Identificação do Candidato no Cartão de Resposta, assine no espaço indicado.
- 5 Marque, com caneta esferográfica azul ou preta de ponta grossa, conforme exemplo abaixo, no Cartão de Resposta único documento válido para correção eletrônica.
 - (a) (c) (d)
- 6 Em hipótese alguma, haverá substituição do Cartão de Resposta.
- 7 Não deixe nenhuma questão sem resposta.
- 8 O preenchimento do Cartão de Resposta deverá ser feito dentro do tempo previsto para esta prova, ou seja, 04 (quatro) horas.
- 9 Serão anuladas as questões que tiverem mais de uma alternativa marcada, emendas e/ou rasuras.
- 10 O candidato só poderá retirar-se da sala de prova após transcorrida 01 (uma) hora do seu início.

BOA PROVA!

CONHECIMENTOS ESPECÍFICOS

1. Considera-se que 2 mols de oxigênio (O₂) estão confinados em um balão a 298 K. O gás, que se comporta idealmente, sofre uma expansão isotérmica reversível, triplicando o seu volume inicial.

Com base nesses dados, qual o valor do trabalho realizado pelo gás durante o processo?

- a) 0,7 kJ
- b) 5,4 kJ
- c) 10,7 kJ
- d) 20,4 kJ
- **2.** Uma barra de cobre de 550 g, inicialmente a 200°C, é imersa em um calorímetro contendo 200 mL de água a 25°C. O volume específico e a capacidade calorífica da água são considerados iguais a 0,001 m³/kg e 4,18 J/(g°C), respectivamente, e a capacidade calorífica do cobre é igual a 0,385 J/(g°C).

Desprezando-se a capacidade calorífica do calorímetro, qual a temperatura de equilíbrio do sistema?

- a) 60,4°C
- b) 80,4°C
- c) 100,4°C
- d) 120,4°C

3. O ciclo de Rankine ideal para uma planta de potência simples a vapor representado no diagrama T x s, conforme ilustrado na Figura 1, é composto por quatro processos em regime permanente. Cada um dos processos está vinculado a um dispositivo: caldeira, turbina, condensador e bomba.

Figura 1: Ciclo de Rankine em um diagrama T x s.

Fonte: Smith; Ness; Abbott, 2007. p. 217.

A partir dessas informações, qual descrição a seguir **NÃO** representa o processo que ocorre em um desses dispositivos?

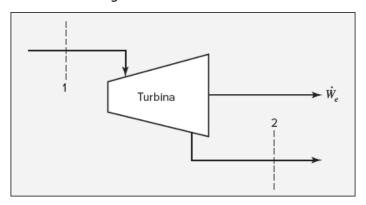
- a) Na caldeira, ocorre a conversão isobárica de água líquida comprimida em vapor superaquecido através do fornecimento de calor. Nessa etapa, o fornecimento de calor é essencial para promover o aquecimento da água líquida até a sua temperatura de saturação, a vaporização isotérmica e o superaquecimento desse vapor.
- b) Na turbina, ocorre a expansão adiabática e isentrópica do vapor superaquecido até a pressão do condensador. Esse processo rejeita calor e produz trabalho mecânico, enquanto a pressão e a temperatura aumentam, resultando em uma exaustão composta por uma mistura de líquido e vapor saturados.
- c) No condensador, ocorre a rejeição de calor do vapor para um meio externo, resultando na condensação isotérmica e isobárica do vapor em líquido saturado.
- d) Na bomba, ocorre a compressão adiabática e isentrópica do líquido saturado até a pressão da caldeira. Esse processo eleva a pressão e provoca um pequeno aumento de temperatura, transformando o líquido saturado em líquido comprimido, com redução do volume específico.

4. Os sistemas de refrigeração desempenham um papel fundamental em aplicações domésticas e industriais, permitindo a manutenção de temperaturas inferiores à do ambiente. Dentre os diversos sistemas existentes, o ciclo de refrigeração por compressão de vapor destaca-se como o mais amplamente utilizado, devido à sua elevada eficiência energética e versatilidade operacional. A respeito desse ciclo específico, analise as afirmações abaixo, assinalando, nos parênteses, (V), para as verdadeiras, e (F), para as falsas.

() O ciclo de refrigeração por compressão de vapor trata-se de um ciclo Otto invertido, em que os processos térmicos são realizados na ordem contrária.

() A temperatura e a pressão, durante os processos de evaporação e condensação, não variam de forma independente.

() As restrições impostas pela segunda lei da termodinâmica requerem o consumo de potência para que o processo ocorra.


() O fluido refrigerante, no evaporador, absorve calor latente da unidade refrigerada, sofrendo uma mudança de fase.

() O aumento da pressão, quando o fluido refrigerante atravessa a válvula, resulta no incremento da sua entropia.

- a) V V F F V.
- b) F F V V F.
- c) F V V V F.
- d) V F F F V.

5. Vapor d'água superaquecido a 5 MPa e 700°C flui através de uma turbina isolada com uma velocidade de 315 m/s, conforme ilustrado na Figura 2. O diâmetro da tubulação de entrada é 25 mm. Na saída do equipamento, o vapor úmido com um título de 87% está a 90°C. Considera-se que, na entrada (1), o volume específico e a entalpia específica do vapor d'água correspondem a 0,088 m³/kg e 3457,7 kJ/kg, nessa ordem, e que, na saída (2), as entalpias da água líquida e vapor correspondem a 376,9 e 2660,1 kJ/kg, respectivamente.

Figura 2: Escoamento em regime estacionário através de uma turbina isolada.

Fonte: Smith; Ness; Abbott, 2007. p. 199.

Com base nesses dados, desprezando-se as variações de energia cinética e de energia potencial e considerando que a turbina foi projetada corretamente, qual a potência desenvolvida pelo dispositivo?

- a) 0,62 MW
- b) 1,92 MW
- c) 2,62 MW
- d) 3,92 MW
- **6.** O diagrama de fases para uma mistura A + B, à pressão constante de 2 bar, exibe um azeótropo de máximo em temperatura. A 328 K, as pressões de saturação dos compostos A e B correspondem a 0,68 bar e 0,46 bar, respectivamente.

Com base nesses dados, os coeficientes de atividade dos compostos A e B são, aproximadamente,

- a) 0,90 e 0,60.
- b) 12,25 e 4,90.
- c) 1,35 e 2,00.
- d) 2,90 e 4,35.

- **7.** No que diz respeito ao equilíbrio de fases, considere as propriedades abaixo, relacionando-as às suas definições.
 - 1. Fugacidade
 - 2. Coeficiente de atividade
 - 3. Potencial químico
 - A. Denota o afastamento de uma mistura binária do comportamento de uma solução ideal.
 - B. Corresponde à variação da energia de Gibbs de uma mistura, em uma fase específica, resultante da adição de uma quantidade unitária de um componente à mesma fase e mantendo constantes a pressão, a temperatura e as quantidades dos demais componentes. Equivale à energia de Gibbs parcial molar.
 - C. Desempenha, para gases reais, função análoga à da pressão parcial para os gases ideais. É possível interpretar como uma pressão ajustada que considera os desvios da idealidade.

Qual é a associação correta entre números e letras?

- a) 1-C, 2-A, 3-B
- b) 1-A, 2-B, 3-C
- c) 1-B, 2-C, 3-A
- d) 1-C, 2-B, 3-A
- **8.** Para que fosse possível tomar um chá recém feito, uma caneca com 300 mL da bebida inicialmente a 70°C foi deixada na bancada da cozinha e esquecida até alcançar o equilíbrio a 25°C. Admite-se o chá como fluido termodinâmico com propriedades idênticas às da água. No início do processo, considera-se o volume específico do chá igual a 0,001 m³/kg e a entalpia e a entropia específicas iguais a 292,96 kJ/kg e 0,95 kJ/(kgK), nessa ordem. Ao final, a entalpia e a entropia específicas do chá são, respectivamente, 104,87 kJ/kg e 0,37 kJ/(kgK).

Com base nesses dados, qual é, aproximadamente, a variação de entropia do universo?

- a) 1,510 kJ/K
- b) 0,510 kJ/K
- c) 1,015 kJ/K
- d) 0,015 kJ/K

9. Uma mistura inadequada de combustível e oxidante pode gerar heterogeneidade dentro do reator, resultando em zonas com excesso de um e em zonas com excesso do outro. Isso pode promover a ocorrência simultânea das reações de combustão completa e incompleta. Considera-se que a combustão do propano (C₃H₈), completa e incompleta, ocorre de acordo com as reações I e II, nessa ordem, a 800°C e 1 bar:

$$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)} - Reação I$$

 $C_3H_{8(g)} + \frac{7}{2}O_{2(g)} \rightarrow 3CO_{(g)} + 4H_2O_{(g)} - Reação II$

Se um reator for alimentado com 1 mol de propano e 12 mols de oxigênio, a expressão, dentre as apresentadas a seguir, que possibilita o cálculo da fração de dióxido de carbono (CO₂) em função das coordenadas de reação $\epsilon_{\rm I}$ e $\epsilon_{\rm II}$, correspondentes às reações I e II, respectivamente é

- a) $\frac{1-\varepsilon_I-\varepsilon_{II}}{12+\varepsilon_I-\varepsilon_{II}}$
- b) $\frac{12-5\varepsilon_I-3,5\varepsilon_{II}}{13+\varepsilon_I+2,5\varepsilon_{II}}$
- c) $\frac{3\varepsilon_I}{13+\varepsilon_I+2,5\varepsilon_{II}}$
- d) $\frac{3\varepsilon_{II}}{12+\varepsilon_I+\varepsilon_{II}}$

10.O diagrama de fases $T \times x_1 \times y_1$, para uma mistura binária ideal 1 + 2 à pressão constante de 1 bar, é apresentado na Figura 3.

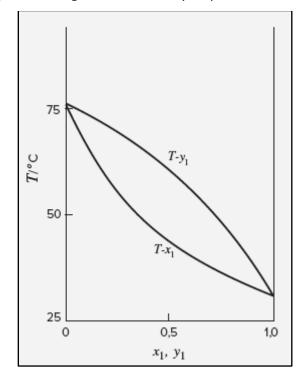


Figura 3: Diagrama T \times $x_1 \times y_1$ à pressão de 1 bar.

Fonte: Smith; Ness; Abbott, 2007. p. 260.

Sobre o comportamento da mistura binária 1 + 2, no que tange às variações de temperatura, das frações molares e da energia de Gibbs, são feitas as seguintes afirmativas:

- I. A uma temperatura abaixo das temperaturas de saturação dos componentes 1 e 2, a mistura existe como um líquido sub-resfriado para qualquer fração molar, evidenciando que a energia de Gibbs do líquido é menor que a do vapor em todo intervalo de composição.
- II. A 50°C, a mistura 1 + 2 está em equilíbrio líquido-vapor, se as frações molares de líquido e de vapor correspondem aproximadamente a $x_1 = 0.38$ e $y_1 = 0.75$.
- III. A uma temperatura acima das temperaturas de saturação dos componentes 1 e 2, a mistura existe como vapor superaquecido, uma vez que as energias de Gibbs do líquido e do vapor são iguais para todo intervalo de composição.
- IV. A curva inferior, identificada como T x_1 , corresponde à curva de ponto de orvalho, enquanto a curva superior, identificada como T y_1 corresponde à curva do ponto de bolha.

Estão corretas apenas as afirmativas

- a) III e IV.
- b) II e IV.
- c) I e III.
- d) I e II.

11.Para o cálculo de transferência de calor por convecção, seja natural ou forçada, podem ser utilizados alguns parâmetros adimensionais, dentre os quais se destacam o número de Nusselt, o número de Reynolds e o número de Prandtl.

Sobre esses parâmetros adimensionais, são feitas as seguintes afirmativas:

- I. O número de Prandtl pode ser considerado a partir da razão entre as difusividades térmica e de momento.
- II. O número de Nusselt fornece uma medida da transferência de calor por convecção que ocorre na superfície de um sólido.
- III. O número de Reynolds pode ser definido como a razão entre as forças inerciais e viscosas.

Estão corretas as afirmativas

- a) I e II, apenas.
- b) I e III, apenas.
- c) II e III, apenas.
- d) I, II e III.
- **12.**Na área industrial, o equipamento utilizado para a troca de calor entre dois fluidos com temperaturas distintas é o trocador de calor. Suas aplicações são de extrema importância, como, por exemplo, o aquecimento ou o resfriamento de fluidos. Um parâmetro essencial utilizado é o coeficiente global de transferência de calor.

O parâmetro de "coeficiente global de transferência de calor" NÃO é obtido a partir

- a) de coeficientes de transferência de calor dos fluidos utilizados.
- b) dos fatores de deposição de impurezas dos fluidos utilizados no equipamento.
- c) de parâmetros para a inclusão de aletas no equipamento.
- d) das temperaturas de entrada e saída dos fluidos.
- **13.**A transferência de calor muitas vezes pode ser dependente do tempo, devido a mudanças de condições de contorno do sólido em análise. Um parâmetro utilizado para essa finalidade é o número de Biot Bi (que representa uma medida da queda de temperatura no sólido em relação à diferença de temperatura entre a superfície e o fluido).

A partir dessa relação, se o número de Biot for muito menor que 1, a resistência à condução no interior do sólido

- a) será muito maior que a resistência à convecção através da camada limite do fluido.
- b) será muito menor que a resistência à convecção através da camada limite do fluido.
- c) será equivalente à resistência à convecção através da camada limite do fluido.
- d) não terá interferência na resistência à convecção através da camada limite do fluido.

14.Aletas ou superfícies estendidas são sólidos secundários, conectadas em um sólido principal. São utilizadas para aumentar consideravelmente a troca de calor entre um sólido e um fluido.

Com relação a aletas, são feitas as seguintes afirmativas:

- I. O resfriamento é mais rápido devido a uma maior área de troca de calor.
- II. A utilização de superfícies estendidas se dá principalmente com a finalidade de melhorar a transferência de calor nas fronteiras do sólido principal, que ocorre por condução.
- III. Uma maneira de elevar a taxa de calor por meio do aumento do coeficiente convectivo, o que pode ser realizado com o aumento da velocidade do fluido que passa pela aleta.

Estão corretas as afirmativas

- a) I e II, apenas.
- b) I e III, apenas.
- c) I, II e III.
- d) II e III, apenas.
- **15.**Na transferência de calor, uma equação muito utilizada no plano cartesiano é a equação da difusão de calor na sua forma geral:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

A equação da difusão de calor pode ser reduzida mediante a dimensão do sólido, a ocorrência ou não de geração de energia, a variação ou não do sistema com o tempo.

Com relação a essa equação, qual das afirmativas a seguir é correta?

- a) Se o regime de condução for estacionário, poderá haver variação na quantidade de energia armazenada no volume de controle.
- b) A partir da solução dessa equação, poder-se-á obter a distribuição de temperaturas apenas em função do espaço.
- c) Essa equação também poderá ser utilizada para a obtenção da transferência de calor por convecção.
- d) Se a transferência de calor for unidimensional (por exemplo, no eixo y), o regime for estacionário e não existir geração de energia, essa equação poderá ser simplificada, permanecendo apenas o segundo termo da equação, igualando esse termo a zero.
- **16.**O petróleo pode ser considerado como um conjunto de hidrocarbonetos e não-hidrocarbonetos. Por ser encontrado em reservatórios distintos, suas propriedades são diferentes, como a densidade e viscosidade, por exemplo. Esses parâmetros podem ser determinados via valores médios ou correlações matemáticas.

NÃO é considerado(a) um parâmetro de caracterização do petróleo a(o)

- a) Curva PEV (Ponto de Ebulição Verdadeiro).
- b) Acidez Total (TAN Total Acid Number).
- c) Curva Foust (Fraction Oil Universal Standard).
- d) Grau API (American Petroleum Institute).

17.Um equipamento essencial na refinaria é a coluna de destilação atmosférica, que tem por objetivo separar as frações de petróleo. A destilação a vácuo é um complemento da destilação atmosférica, que visa à redução do ponto de ebulição das frações pesadas e permite a separação do óleo cru a temperaturas menores, se comparada com a destilação atmosférica.

Os produtos oriundos da destilação a vácuo, como o gasóleo leve e pesado de vácuo, seguem para unidades de

- a) craqueamento.
- b) desasfaltação.
- c) desparafinação.
- d) adsorção de parafinas.
- **18.**Entende-se por coqueamento retardado um processo em que um dos produtos obtidos é o coque de petróleo, que pode ser usado na produção de eletrodos na indústria metalúrgica, e outras variáveis de coque, como o 'coque esponja' e o 'coque agulha'.

Sobre o processo de coqueamento, é correto afirmar que

- a) a formação do coque ocorre no forno, onde se dá o aquecimento da carga.
- b) a carga de petróleo é aquecida no forno a uma temperatura menor do que a do processo de craqueamento térmico.
- c) o processo de coqueamento é geralmente utilizado quando a carga possui quantidades significativas de impurezas, o que seria inviável em processos com uso de catalisadores.
- d) Produtos, como a nafta e o gasóleo, seguem para unidades de dessalgação para um processamento posterior.
- 19.Em uma refinaria, o resíduo do petróleo (o óleo não aproveitado depois de passar pela destilação atmosférica e a vácuo) geralmente passa por processos que visam quebrar moléculas maiores em menores, por exemplo, com o objetivo de gerar uma gasolina de alta qualidade ou outros produtos de maior valor agregado. Um dos processos utilizados para essa finalidade é o craqueamento catalítico em leito fluidizado (FCC- Fluid Catalytic Cracking).

Sobre esse processo, é **INCORRETO** afirmar que

- a) o craqueamento catalítico é semelhante ao craqueamento térmico, porém as reações químicas do craqueamento catalítico ocorrem em condições menos rigorosas, sendo mais seletivas, devido ao emprego de um catalisador.
- b) o craqueamento deste óleo será mais fácil se a predominância do resíduo do petróleo for aromática, pois uma limitação do catalisador utilizado no craqueamento catalítico é a quebra de anéis de benzeno dos compostos que compõem a carga.
- c) uma desvantagem desse processo é a obtenção de produtos de destilados de média e de baixa qualidade, seja em relação ao teor de enxofre, ao de olefinas ou ao de aromáticos, sendo necessário enviar os produtos gerados para outras unidades de tratamento.
- d) o catalisador utilizado nesse processo necessita ser regenerado, necessariamente a partir da queima do coque, o qual fica impregnado em sua superfície.

20. Quando o petróleo chega a uma refinaria, ele pode conter impurezas que, se não forem removidas, podem gerar problemas referentes à corrosão, à estabilidade de emulsões e à diminuição da qualidade dos produtos obtidos na destilação. Uma das impurezas mais relevantes em uma carga de petróleo é o enxofre.

Em relação ao enxofre, é **INCORRETO** afirmar que esse contaminante

- a) possui característica oleofílica.
- b) terá, geralmente, um maior teor quanto maior for a densidade do óleo.
- c) é facilmente removido pelo processo de dessalgação.
- d) aumenta a polaridade dos óleos, podendo contaminar catalisadores de processos de refino.
- 21. As máquinas de fluxo podem ser classificadas de maneira ampla em dois tipos: máquinas de deslocamento positivo e máquinas dinâmicas, dependendo da forma como a energia é transferida. Alguns tipos de bomba com boa vedação são capazes de gerar uma pressão de vácuo considerável em sua entrada, mesmo estando secas, permitindo-lhes elevar um líquido situado a vários metros abaixo de sua posição.

A bomba acima descrita é classificada como

- a) autoescorvante.
- b) dinâmica.
- c) peristáltica.
- d) de vácuo.
- 22. Considere um escoamento em regime permanente, bidimensional, incompressível no plano xy para o qual a função corrente é assim definida:

$$\psi = ae^{x+b} + y^2 - \frac{c}{x}$$

Considere, também, que a, b e c são constantes.

Com base nessas informações, quais são, respectivamente, as componentes y e x do campo de velocidade correspondente?

- a) $ae^{x+b} + \frac{c}{x^2}e 2y$
- b) $-2ye \ ae^{x+b} + \frac{c}{x^2}$
- c) $-ae^{x+b} \frac{c}{x^2} = 2y$ d) $-abe^{x+b} \frac{c}{x^2} = 2y$
- 23. Considere a difusão unidimensional, em geometria cartesiana, sem reação química e com propriedades físicas constantes, e em regime permanente de uma mistura de dois componentes A e B. As frações molares desses componentes podem ser denominadas y_A e y_B, respectivamente. Considere, também, estes dois casos: Contradifusão equimolar (caso 1) e Difusão de A em B inerte e estagnado (caso 2).

Com base nessas informações, o valor da razão entre o fluxo molar de A (calculado pelo caso 1) sobre o fluxo molar de A (calculado pelo caso 2) é

- a) $y_B 1$.
- b) y_{A.}
- c) y_B.
- d) $y_A 1$.

24. Alguns números adimensionais importantes para a convecção mássica forçada são os números de *Stanton* (St_M), *Schmidt* (Sc) e *Sherwood* (Sh).

Relacione as duas colunas abaixo, estabelecendo conexão entre os números adimensionais mencionados e suas definições.

 $1 - St_M$ A – Relação entre o fenômeno da convecção mássica e a contribuição convectiva em razão do movimento do meio.

2 – *Sc* B – Razão entre resistência à difusão e resistência à convecção mássica.

3 – Sh C – Relação entre as forças viscosas e o fenômeno da difusão.

Qual a associação correta entre números e letras?

- a) 1C 2A 3B.
- b) 1B 2C 3A.
- c) 1C 2B 3A.
- d) 1A 2C 3B.
- **25.**Considere a difusão unidimensional, no plano cartesiano, em estado estacionário, de um gás A em um líquido B, sendo o meio estacionário e homogêneo. Esse processo ocorre com coeficiente de difusão D_{AB} e concentração total constantes. A concentração de A na superfície, origem do eixo, do líquido é constante e igual a C_{AO} . Suponha que o gás seja consumido à medida que difunde no meio líquido segundo uma reação de ordem zero, com taxa de consumo constante, k_O . A uma distância x_I da superfície do líquido, o gás foi totalmente consumido.

Com base nesses dados, o perfil de concentração do gás no meio líquido é

- a) $\frac{-k_0}{D_{AB}} \frac{x^2}{2} + \left[\frac{-C_{A0}}{x_1} + \frac{k_0 x_1}{2D_{AB}} \right] x + C_{A0}$
- b) $\frac{k_0}{D_{AB}} \frac{x^2}{2} + \left[\frac{-C_{A0}}{x_1} + \frac{k_0 x_1}{2D_{AB}} \right] x + C_{A0}$
- C) $\frac{k_0}{D_{AB}} \frac{x^2}{2} + \left[\frac{k_0 x_1}{2D_{AB}}\right] x + C_{A0}$
- d) $\frac{-k_0}{D_{AB}} \frac{x^2}{2} + \left[\frac{C_{A0}}{x_1} + \frac{k_0 x_1}{2D_{AB}} \right] x C_{A0}$

26.Considere a difusão com reação química heterogênea na superfície de uma partícula catalítica não porosa. A partícula do catalisador está envolta em um filme gasoso estagnado. Considere, também, a seguinte reação irreversível e de pseudoprimeira ordem $A \rightarrow B$. O problema é unidimensional em geometria cartesiana no estado estacionário. A é o soluto reagente e B é o produto, sendo que ambos difundem em contradifusão equimolar. Na fronteira superior do filme estagnado, a fração molar de A é y_{A0} ; ao percorrer uma distância δ até a superfície do catalisador, a fração molar de A em δ é $y_{A\delta}$.

Também deve ser considerado que a concentração total e as propriedades físicas são constantes. O termo $\frac{D_{AB}}{\delta k_S}$ (em que D_{AB} e k_S são o coeficiente de difusão binário e a constante de velocidade da reação, respectivamente) relaciona as resistências à reação química heterogênea irreversível na superfície de uma partícula e à difusão em um filme gasoso que envolve o catalisador.

Com base nessas informações, qual a afirmação correta, dentre as apresentadas a seguir?

- a) No caso em que $\frac{D_{AB}}{\delta k_S}$ tende a zero, o fluxo global de A é controlado pela resistência à difusão, o que leva a $y_{A\delta} \to y_{A0}$.
- b) No caso em que $\frac{D_{AB}}{\delta k_S}$ tende a zero, o fluxo global de A é controlado pela resistência à difusão, o que leva a $y_{A\delta} \to 0$.
- c) No caso em que $\frac{D_{AB}}{\delta k_S}$ tende ao infinito, o fluxo global de A é controlado pela resistência à reação química, o que leva a $y_{A\delta} \to 0$.
- d) No caso em que $\frac{D_{AB}}{\delta k_S}$ tende ao infinito, o fluxo global de A é controlado pela resistência à reação química, o que leva a $y_{A0} \rightarrow 0$.
- **27.**Considere estas informações: 50 mol/h de uma corrente gasosa composta de ar (70% em base molar) e SO₂ passam por um processo de absorção em uma corrente líquida de água pura inicialmente, sendo que apenas SO₂ é transferido para a fase líquida. O gás que sai do processo está em equilíbrio a 1 atm. Nessas condições, considere, também, a pressão de vapor da água e do SO₂ na fase gasosa como 31,6 mmHg e 176 mmHg, respectivamente; a fase gasosa ideal; 1 atm = 760 mmHg.

Sabendo-se que a fração molar da água no efluente líquido é de 94% em base molar, a razão entre as vazões molares inicial e final de líquido é, aproximadamente

- a) 0,98.
- b) 0,96.
- c) 0,95.
- d) 0,97.
- **28.**Considere estas informações: (a) uma solução saturada de determinado sal entra em um cristalizador a 90 °C e com vazão mássica de 80 kg/h; (b) uma solução saturada sai do cristalizador a 50°C a 51,42 kg/h; e (c) a solubilidade desse sal a 90 °C é de 180 g para cada 100 g de água.

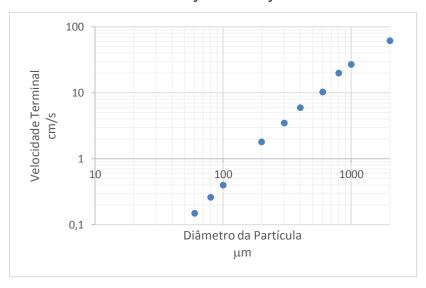
Com base nessas informações, a solubilidade desse sal a 50 °C é aproximadamente

- a) 100 g de sal para cada 100 g de água.
- b) 80 g de sal para cada 100 g de água.
- c) 90 g de sal para cada 100 g de água.
- d) 70 g de sal para cada 100 g de água.

29. Na extração líquido-líquido, é necessário que as duas fa	ases sejam colocadas em contato
para permitir a transferência de massa e, em segu	ida, elas devem ser separadas.
Diferentemente da absorção de gás e da destilação	, a extração apresenta desafios
adicionais devido a características específicas das fases	envolvidas. Por exemplo, as duas
fases frequentemente possuem, o que	reduz a energia disponível para
mistura e separação, especialmente quando o	é utilizado. Além disso, as
fases apresentam, o que dificulta tanto o	processo de mistura quanto o de
separação.	

As expressões que preenchem, correta e respectivamente, as lacunas dessa sentença são:

- a) densidades comparáveis fluxo gravitacional viscosidades relativamente altas.
- b) densidades muito diferentes fluxo mecânico temperaturas elevadas.
- c) densidades altas fluxo mecânico temperaturas baixas.
- d) viscosidades baixas fluxo gravitacional densidades muito diferentes.
- **30.**Na destilação multicomponente, assim como na destilação de misturas binárias, o cálculo dos estágios de equilíbrio considera balanços de massa e energia, além dos equilíbrios entre as fases líquida e vapor. É possível escrever um balanço de massa para cada componente da coluna, seja analisando o sistema como um todo, seja analisando cada estágio individualmente. Entretanto, apenas um balanço de energia é necessário para a coluna inteira ou para cada estágio.


Sobre o fracionamento de misturas multicomponentes e binárias, analise as afirmações a seguir, assinalando, nos parênteses, (V), para as verdadeiras, e (F), para as falsas.

- () Pratos ideais são assumidos para o projeto em cascata. O número de estágios é ajustado posteriormente, para levar em conta a eficiência dos pratos.
- () O método mais comum para cálculos em destilação binária envolve assumir um determinado número de pratos acima e abaixo da alimentação para uma determinada razão de refluxo; logo, então, determina-se o nível de separação possível de ser alcançado.
- () As condições de refluxo total e refluxo mínimo, no fracionamento de misturas multicomponentes, são determinadas para validar o projeto da coluna de destilação.
- () A abordagem preferida do projeto da coluna de destilação, em sistemas multicomponentes, baseia-se na determinação prévia da separação desejada, para então se determinar o número de pratos acima e abaixo da alimentação.

- a) V V V F.
- b) F-F-F-V.
- c) V F V F.
- d) F-V-F-V.

31.Um leito fluidizado é utilizado para a secagem de partículas esféricas com massa específica de 1500 kg/m³ e diâmetro médio de 0,2 mm. O fluido utilizado para secagem é o ar, com massa específica de 1,2 kg/m³, viscosidade dinâmica de 1,8x10⁻⁵ Pa.s e vazão igual a 0,03 m³/s. Durante a operação, deseja-se que o leito funcione com uma velocidade superficial igual a 3 vezes a velocidade mínima de fluidização. A velocidade terminal para uma partícula individual no ar, para um número de Reynolds baixo, foi determinada experimentalmente, sendo apresentada na Figura 4.

Figura 4 - Velocidade mínima de fluidização em função do diâmetro médio da partícula

Fonte: O Autor

A Tabela 1 apresenta as opções de tubos de aço inox disponíveis.

Tabela 1 - Diâmetro nominal de tubos comerciais.

Diâmetro Nominal	Diâmetro Externo	Diâmetro Interno
1"	33,4 mm	27,89 mm
6"	168,3 mm	161,5 mm
12"	323,85 mm	314,7 mm
16"	406,4 mm	396,8 mm

A partir desse conjunto de dados, o diâmetro nominal aproximado do leito fluidizado para que o sistema trabalhe nesta condição operacional deve ser

- a) 1"
- b) 6"
- c) 12"
- d) 16"

32.Os estudos da fluidodinâmica que envolvem o contato fluido-partículas são fundamentais para o aprendizado de operação e projeto de equipamentos, como adsorção, secagem, reatores catalíticos, leito fluidizado, leito fixo, entre outros.

Sobre à fluidodinâmica em sistemas particulados e granulares, analise as afirmações a seguir, assinalando, nos parênteses, (V), para as verdadeiras, e (F), para as falsas.

- () A fluidodinâmica que envolve o contato fluido-partículas utiliza-se sempre de referenciais Eulerianos e Lagrangianos.
- () O modelo Lagrangiano deve ser empregado em processos com grande concentração de sólidos.
- () O modelo Euleriano pode ser empregado para a fase particulada, desde que ela possa ser considerada como um fluido contínuo.

- a) V V V
- b) V-F-F
- c) F V F
- d) F-F-V

33.Um engenheiro foi contratado para prestar consultoria em uma empresa que pretende produzir bioprodutos. A etapa final consiste em um processo de secagem em leito fluidizado. Para elaborar seu projeto, o engenheiro solicitou uma análise granulométrica do material seco, produzido em laboratório. A classificação granulométrica foi implementada através de peneiramento de uma amostra de 100 g de sólidos particulados. O resultado obtido está apresentado na Tabela 2.

Tabela 2 -	Distribuição	granulométrica	da	amostra.
		J		

Peneiras (mesh)	x _i (%)
-45+50	0,0
-50+70	16,5
-70+80	25,3
-80+100	51,2
-100+200	1,1
-200+270	4,9
-270	1,0

A Tabela 3 traz a relação entre mesh e a abertura da malha da peneira em µm.

Tabela 3 - Relação entre mesh e abertura da malha - µm

Mesh	μm	Mesh	μm
10	2000	60	250
12	1680	70	210
14	1410	80	177
16	1190	100	149
18	1000	120	125
20	841	140	105
25	707	170	88
30	595	200	74
35	500	230	63
40	420	270	53
45	354	325	44
50	297	400	37

Para o projeto do Leito Fluidizado, é necessário determinar um diâmetro que assegure que 94% dos sólidos permaneçam no leito.

Baseando-se nos dados das Tabelas 2 e 3, o diâmetro a ser utilizado nos cálculos é

- a) 177 µm
- b) 149 µm
- c) 74 µm
- d) 53 µm

- **34.**Os sedimentadores são geralmente classificados de acordo com sua geometria e o tipo de alimentação da suspensão. O sedimentador contínuo convencional, por exemplo, é um tanque dotado de dutos para alimentação, saída de clarificado e descarte do espessado.
 - Com base nas hipóteses e nos fundamentos para a formulação e projeto de sedimentadores, qual das afirmações a seguir está correta?
- a) O projeto de sedimentadores contínuos não considera dados obtidos de operações em batelada devido às diferenças nos regimes de operação.
- b) O sedimentador contínuo convencional não permite a separação de clarificado e espessado de forma simultânea.
- c) A velocidade ascensional do fluido, para evitar o arraste de partículas no extravasante, deve ser inferior ou igual à velocidade de sedimentação das partículas.
- d) Os fenômenos relacionados à porosidade do meio são irrelevantes no modelo de sedimentação.
- **35.**Em um processo industrial, partículas sólidas são separadas em um elutriador operando com fluxo ascendente de líquido. Para assegurar a separação correta, é necessário calcular a velocidade terminal das partículas no líquido. Considere que as partículas têm massa específica de 2,7 g/cm³, diâmetro equivalente de 90 μm diâmetro da esfera de mesmo volume e esfericidade de 0,85. O líquido utilizado tem massa específica de 1,0 g/cm³ e viscosidade dinâmica de 0,8 cP.

Considere que o elutriador opera com uma concentração volumétrica de partículas de 12% e uma velocidade ascendente do fluido de 0,18 cm/s. Despreze o efeito das paredes do tubo. Lembre-se de que, para partículas esféricas, a velocidade corrigida pela concentração do meio pode ser dada por: $\frac{u}{u_T} = (1-C_V)^n$. Considere, também, estas informações:

U = velocidade terminal da partícula corrigida

 u_T = velocidade terminal da partícula

C_V = concentração volumétrica de partículas

 $n = 3,65paraR_{\infty} < 0,2$ $n = 4,35xR_{\infty}^{-0,03} - 1para0,2 < R_{\infty} \le 1,0$

 $n = 4.35xR_{\infty}^{-0.01} - 1para1 < R_{\infty} \le 500$

 $n=1.39paraR_{\infty}>500$

Com base nesse conjunto de informações, a velocidade terminal das partículas, considerando o regime de sedimentação e a influência da concentração volumétrica do sistema é

- a) 0,51cm/s.
- b) 0,61 cm/s.
- c) 0,71 cm/s.
- d) 0,81 cm/s.

- **36.**O ciclone é um equipamento muito comum para separação de partículas sólidas, utilizando a força centrífuga para intensificar a separação por densidade e tamanho. A concentração de partículas sólidas afeta a eficiência de separação. Em uma fábrica de cimento, foi detectada a redução da eficiência em um dos ciclones. A tarefa de identificação do problema ficou a cargo do estagiário, em cujo relatório ele fez as seguintes observações:
 - () Constatou-se a inércia das partículas, que equaliza o momento em camadas adjacentes do gás, diminuindo a componente tangencial de velocidade.
 - () Verificou-se o aumento do atrito entre a mistura gás-partículas e a parede do ciclone, em virtude do depósito das partículas, que também reduz a componente tangencial de velocidade.

Analise as observações feitas pelo estagiário, assinalando, nos parênteses, (V), para as verdadeiras, e (F), para as falsas.

- a) V V
- b) V F
- c) F V
- d) F F

37.Um filtro a vácuo de laboratório, com seção circular de diâmetro 100 mm, é utilizado para a filtração de uma solução de carbonato de cálcio. O processo é mantido à pressão constante, e a solução apresenta uma concentração de sólidos na solução a ser filtrada igual a 30,0 g/L. Os dados experimentais de volume de filtrado em função do tempo estão apresentados na Tabela a seguir:

Volume de Filtrada - L	Tempo - s
0,25	6,0
0,50	12,2
0,75	18,6
1,00	25,3
1,25	32,0
1,50	39,0

Considere que a filtração foi realizada a 20°C. Considere, também, a equação geral da filtração para pressão constante:

$$\frac{t}{V} = \frac{\mu. \alpha. C}{2. \Delta P. A^2} V + \frac{\mu. R_m}{\Delta P. A}$$

Nessa equação, considere as seguintes informações:

$$\mu = 0.01 \frac{g}{cm. s}$$

$$\Delta P = 54380 \frac{g}{cm. \, s^2}$$

 $A = \'areada\'area filtrante emcm^2$

$$\textit{C} = concentra \\ \texttt{ç\~ao} \\ des \\ \acute{o} \\ lidos \\ em \\ \frac{g \\ des \\ \acute{o} \\ lidos \\ g \\ del \\ \acute{q} \\ uido \\ em \\ otherwise \\ \\ des \\ \acute{o} \\ lidos \\ em \\ otherwise \\ otherwise \\ otherwise \\ \\ otherwise \\ otherwi$$

$$\alpha = Resistênciaespecíficadatortaem \frac{cm}{g}$$

Com base nos dados fornecidos e considerando que o processo de filtração é conduzido à pressão constante, o valor aproximado da resistência do meio filtrante (R_m) é

- a) $1x10^7 cm^{-1}$
- b) $1x10^8 cm^{-1}$
- c) $1x10^9cm^{-1}$
- d) $1x10^{10}cm^{-1}$

38.Em uma coluna de destilação, a separação dos componentes ocorre devido ao contato entre as fases líquida e vapor ao longo dos estágios. A coluna pode ser dividida em duas seções principais: a seção de retificação (acima do ponto de alimentação) e a seção de stripping (abaixo do ponto de alimentação). Uma coluna de destilação é utilizada para separar uma mistura binária em que o componente mais volátil deve ser recuperado no topo com alta pureza. O número de estágios teóricos e a eficiência do processo são afetados diretamente por diferentes variáveis operacionais e de projeto.

Considere as seguintes afirmações:

()	0	aumento	da	relação	de	refluxo	em	uma	coluna	a de	destilaçã	o r	eduz c	ว ทน์	ímero	de
está	gio	s teóricos	ne	cessário	s pa	ra ating	gir u	ma n	nesma	espe	ecificação	de	pureza	a no	topo) da
colu	na.															

() A concentração do produto de topo sem o refluxo não pode ser maior do que a concentração do vapor que sobe do prato de alimentação.

Analise as observações acima, assinalando, nos parênteses, (V), para as verdadeiras, e (F), para as falsas.

- a) F F
- b) F V
- c) V F
- d) V V

39.Um processo industrial foi projetado para clarificar uma corrente contendo polifenóis solúveis em água e fibras insolúveis, utilizando um tanque de sedimentação. A corrente apresenta uma vazão de 20 L/h, concentração de 100 g/L e concentração de sólidos na lama de 200 g/L. A massa específica das partículas é de 1,5 g/cm³, enquanto a do líquido é de 1,0 g/cm³.

Durante os testes de sedimentação em uma proveta, foram obtidos os seguintes dados para a altura da interface sólido-líquido em função do tempo:

Tempo - min	Altura – cm
0	2,00
5	1,81
10	1,64
20	1,34
40	0,90

Vale lembrar que o Método de Kynch pode ser utilizado para determinação da área do sedimentador, utilizando apenas um ensaio, como o apresentado nessa tabela. Dentre as hipóteses do Método, pode-se listar:

- 1. A concentração volumétrica das partículas ε_{P0} é considerada como distribuída de forma homogênea por todo o volume do recipiente ao longo da altura inicial da interface z_0 .
- 2. Na zona de clarificação, não existem partículas, o que leva a $\varepsilon_{pi} = \varepsilon_{p0} \frac{z_0}{z_i}$, onde z_i é a intersecção da tangente à curva de sedimentação no tempo i.
- 3. Para calcular a área do sedimentador, pode-se utilizar a equação $A=\frac{Q_A\varepsilon_A}{q_i}\Big(\frac{1}{\varepsilon_{pi}}-\frac{1}{\varepsilon_{pL}}\Big)$, onde os subscritos A, i e L referem-se à alimentação, à camada limitante e à lama, respectivamente; e Q é a vazão volumétrica da suspensão.

Sabendo que a velocidade de sedimentação pode ser obtida pela variação da altura da interface ao longo do tempo, o valor aproximado do diâmetro do tanque de sedimentação necessário para obter a clarificação desejada é

- a) 0,18 m
- b) 0,38 m
- c) 0,58 m
- d) 0,78 m

40.Um leito fixo preenchido com partículas esféricas de diâmetro médio igual a $d_p=3$ mm está sendo utilizado para filtrar água. O leito possui uma altura H=0.5 m e uma porosidade de $\epsilon=0.4$. A água a 20°C, com uma vazão volumétrica de Q=0.002 m³/s, atravessa o leito. A seção transversal do leito tem um diâmetro de D=0.2 m.

As propriedades da água são: massa específica $\rho=998$ kg/m³ e viscosidade dinâmica $\mu=0,001$ Pa.s. O escoamento ocorre no regime laminar. A queda de pressão no leito pode ser estimada pela equação de Ergun:

$$\frac{\Delta P}{H} = \frac{150.\,\mu.\,(1-\varepsilon)^2.\,v}{\varepsilon^3.\,d_P^2} + \frac{1,75.\,\rho.\,(1-\varepsilon).\,v^2}{\varepsilon^3.\,d_P}$$

Nessa equação, v é a velocidade superficial.

Baseando-se nessas informações, o valor aproximado para a queda de pressão estimada para o leito é

- a) 1 000 Pa
- b) 4 000 Pa
- c) 14 000 Pa
- d) 24 000 Pa

FOLHA DE RASCUNHO

 $^{\circ}$ ∞